50 COMPUTE!

March. 1981 issua 10.

Hex

Conversion
Using The 6502’'s
Decimal Mode

Jack Clarke

Since the advent of 8 bit microprocessors, the hex-
idecimal numbering system has been around to help
provide a shorthand notation for binary numbers. ..
remember 4 binary bits can be expressed with just 1
hexadecimal character? (F = 1111,)

While this shorthand notation has revolutionized
Assembly Language coding, undoubtedly many a
new computerist has cursed the notation as pro-
blematical, confusing and cumbersome.

To assist the programmer (old and new),
elaborate tables have been generated to convert the
radix of a number from one base to another...
remember radix and base are synonymous? To fur-
ther the cause of this translation, numerous programs
have been written in higher level languages. Take a
loak at Texas Instrument's hand-held
*Programmer’’ which has gained a commendable
respect in the programming community. Have you
ever tried to poke or peek with your Apple without
one of the above?

What is this decimal mode you ask? Simply
defined it is a clever bit of binary manipulation that
is performed inside the microprocessor to insure that
when you add, a *“1°” to a ‘9"’ that the result is ‘@
with carry” and not *‘A”’, {also known as BCD
coding). In other words, 4 binary bits can express a
decimal number 0 thru 9, (10 thru 15 is illegal). So
an eight bit number provides numbering 0 thru 99.

Now, let’s take a closer lock at the 6502 in-
struction set and see how the decimal mode can help
with this numbering conversion.

A ““bit’” of examination reveals that the decimal
mode only works when performing an add (ADC) or
subtract (SBC) instruction. All other instructions
simply ignore the decimal mode. Take for example
the increment/decrement instruction, It performs an
addition or subtraction (by one) but always in the
hinary/hex mode. Now, what would happen if we
combined a decrement/increment instruction with an
add/subtract instruction. The increment instruction
would count up one in hexadecimal while the add in-
struction would simultaneously count up in
decimal...did I just see a hex to decimal conversion
go by?

How about an example? Suppose you wish to
convert the hex number ““AQ"’ to the equivalent
decimal number. (Don’t pull out your conversion
tables yet). Follow the flow chart in Figure 1 and
walk through the steps. First set the decimal mode

(SED), clear the accumulator (LDA # IMM) and
clear the carry flag (CLC). Next, load the x-register
with the hex number to be converted (LDX AQ
IMM), Now, the conversion starts, Decrement the
x-register (DEX) and test for zero (BNE). If the
x-register is >0 then add 1 to the accumulator (ADC
1 IMM), Repeat the sequence until the x-register has
counted down to 0. When you examine the contents
of the accumulator you will find the decimal
equivalent of '*AD* sitting there quietly. If you need
a hex equivalent of a decimal number you would
enter the decimal number in the accumulator and
subtract one in the decimal mode. ..each time you
subtract you would also increment the x-register. See
any similarities?

For numbers greater than 99 you would perform
the addition or subtraction using two or more
memory locations and keep track of the carry flag,
{double precision arithmetic). The X and Y registers
could also be cascaded for extended range with 16
bits. Conversion of 0000 thru FFFF could be easily
implemented.

START

¥

SET DECIMAL FLAG (SED)

|

CLEAR CARRY FLAG (LG

y

CLEAR ACCUMULATOR (LDA #0)

|

LUAD INDEX

[REGISTER WITH HEX NUMBFR o oy sa0
REGISTER wiih nex Neetr| ¢ !
TO BE CONVERTED
J/
ADD 1 TO ACCUMULATOR (ADG 1)

y

DECREMENT INDEX RECISTER| [DEX)

ACTUAL CONVERSION
13 Tustructioc)

m‘ngx m’_ms’rm

\’"‘/

FINISHED

L

Hex To Decimal Conversion

March, 1981. issue 10. COMPUTE

61

The best way to familiarize yourseif with this
type of approach is to try it on your own computer.
After gaining a little confidence in the ease of the
conversion, you will soon find the same techniques
incredibly helpful in more complex operations such
as multiplication and division. Take the example of a
program that is sampling the rate of an asynchronous
input... By knowing the **sample time’’ of your pro-
gram (each time you read the port) and adding that
constant instead of ‘1"’ you effectively convert and
multiply in one operation resulting in a decimal for-
matted *‘total number of samples”’

To summarize the concept of radix conversion
using the 6502’s decimal mode, start with zero in the
accumulator and index register and add *“1"’ to the
accumulator {decimal mode) and increment the index
register at the same time. You will observe the ac-
cumulator counting up in decimal and the index
register counting up in binary/hex.

Say good-bye to those dog-eared tables and long
involved conversion programs that you have been
using, The 6502 takes another bow.

